Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biol Dyn ; 17(1): 2182373, 2023 12.
Article in English | MEDLINE | ID: covidwho-2284511

ABSTRACT

In this paper, we developed a mathematical model to simulate virus transport through a viscous background flow driven by the natural pumping mechanism. Two types of respiratory pathogens viruses (SARS-Cov-2 and Influenza-A) are considered in this model. The Eulerian-Lagrangian approach is adopted to examine the virus spread in axial and transverse directions. The Basset-Boussinesq-Oseen equation is considered to study the effects of gravity, virtual mass, Basset force, and drag forces on the viruses transport velocity. The results indicate that forces acting on the spherical and non-spherical particles during the motion play a significant role in the transmission process of the viruses. It is observed that high viscosity is responsible for slowing the virus transport dynamics. Small sizes of viruses are found to be highly dangerous and propagate rapidly through the blood vessels. Furthermore, the present mathematical model can help to better understand the viruses spread dynamics in a blood flow.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Viscosity , Models, Biological , Biological Transport
2.
Soft Matter ; 18(13): 2528-2540, 2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1671665

ABSTRACT

Some contagious diseases, such as COVID-19, spread through the transmission of aerosols and droplets. Aerosol and droplet formation occurs inside and outside of the respiratory tract, the latter being observed during speaking and sneezing. Upon sneezing, saliva is expelled as a flat sheet, which destabilizes into filaments that subsequently break up into droplets. The presence of macromolecules (such as mucins) in saliva influences the dynamics of aerosol generation, since elasticity is expected to stabilize both fluid sheets and filaments, hence deterring droplet formation. In this study, the process of aerosol formation outside the respiratory tract is systematically replicated using an impinging jet setup, where two liquid jets collide and form a thin fluid sheet that can fragment into ligaments and droplets. The experimental setup enables us to investigate a range of dynamic conditions, quantified by the relevant non-dimensional numbers, which encompass those experienced during sneezing. Experiments are conducted with human saliva provided by different donors, revealing significant variations in their stability and breakup. We quantify the effect of viscoelasticity via shear and extensional rheology experiments, concluding that the extensional relaxation time is the most adequate measure of a saliva's elasticity. We summarize our results in terms of the dimensionless Weber, Reynolds, and Deborah numbers and construct universal state diagrams that directly compare our data to human sneezing, concluding that the aerosolization propensity is correlated with diminished saliva elasticities, higher emission velocities, and larger ejecta volumes. This could entail variations in disease transmission between individuals which hitherto have not been recognized.


Subject(s)
COVID-19 , Saliva , Humans , SARS-CoV-2 , Sneezing , Viscosity
4.
Sci Rep ; 11(1): 16051, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1345585

ABSTRACT

With an increasing body of evidence that SARS-CoV-2 is an airborne pathogen, droplet character formed during speech, coughs, and sneezes are important. Larger droplets tend to fall faster and are less prone to drive the airborne transmission pathway. Alternatively, small droplets (aerosols) can remain suspended for long time periods. The small size of SARS-CoV-2 enables it to be encapsulated in these aerosols, thereby increasing the pathogen's ability to be transmitted via airborne paths. Droplet formation during human respiratory events relates to airspeed (speech, cough, sneeze), fluid properties of the saliva/mucus, and the fluid content itself. In this work, we study the fluidic drivers (fluid properties and content) and their influence on factors relating to transmissibility. We explore the relationship between saliva fluid properties and droplet airborne transmission paths. Interestingly, the natural human response appears to potentially work with these drivers to mitigate pathogen transmission. In this work, the saliva is varied using two approaches: (1) modifying the saliva with colloids that increase the viscosity/surface tension, and (2) stimulating the saliva content to increased/decreased levels. Through modern experimental and numerical flow diagnostic methods, the character, content, and exposure to droplets and aerosols are all evaluated. The results indicate that altering the saliva properties can significantly impact the droplet size distribution, the formation of aerosols, the trajectory of the bulk of the droplet plume, and the exposure (or transmissibility) to droplets. High-fidelity numerical methods used and verify that increased droplet size character enhances droplet fallout. In the context of natural saliva response, we find previous studies indicating natural human responses of increased saliva viscosity from stress and reduced saliva content from either stress or illness. These responses both favorably correspond to reduced transmissibility. Such a finding also relates to potential control methods, hence, we compared results to a surgical mask. In general, we find that saliva alteration can produce fewer and larger droplets with less content and aerosols. Such results indicate a novel approach to alter SARS-CoV-2's transmission path and may act as a way to control the COVID-19 pandemic, as well as influenza and the common cold.


Subject(s)
COVID-19/transmission , SARS-CoV-2/isolation & purification , Saliva/virology , Aerosols/chemistry , Air Microbiology , Colloids/chemistry , Cough , Humans , Pandemics , Saliva/chemistry , Sneezing , Viscosity
5.
Acta Med Port ; 34(1): 44-55, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1049254

ABSTRACT

COVID-19 associated coagulopathy is a dysfunction of severe SARS-CoV-2 infection, characterized by significantly increased fibrinogen, D-dimer and C reactive protein and normal to near-normal prothrombin time, activated partial thromboplastin time and platelet count. Hypercoagulopathy and hypofibrinolysis coexist and are detected by viscoelastic tests. These features, when associated with immobilization and intrinsic risk factors (age, obesity, comorbidities, drugs) of the patient, can trigger thromboembolic events, despite thromboprophylaxis. The lungs are the first and most severely damaged organ. To date, most patients have exhibited hypercoagulability on viscoelastic tests not detected by standard coagulation tests. A high rate of thrombotic events was reported, suggesting that it should be considered as a cause of clinical deterioration in intensive care and potentially other clinical settings. In advanced stage, COVID-19 associated coagulopathy, fibrinogen and platelet count can decrease significantly, depending on the severity of clinical status resembling consumptive coagulopathy. In this stage, bleeding events can occur, especially if the patient is under extracorporeal membrane oxygenation (ECMO). Viscoelastic tests are very useful tools to assess hypercoagulability and hypofibrinolysis (not detectable by standard coagulation tests) in critically ill SARS-CoV-2 patients with COVID-19 associated coagulopathy and look like very promising tools for anticoagulation management. However, further research needs to be carried out to determine whether abnormal viscoelastic tests alone or in combination with other clinical or laboratory findings can identify patients at increased thrombotic risk. Clinical trials to evaluate hypercoagulability using viscoelastic tests and the need for personalized dosage of anticoagulation in SARS-CoV-2 patientsare quickly emerging.


A coagulopatia associada à COVID-19 é uma disfunção associada à infeção SARS-CoV-2 grave, caraterizada por aumento significativo do fibrinogénio, D-dímeros e Proteína C reativa, e por valores normais/muito pouco alterados do tempo de protrombina, tempo de tromboplastina parcial ativado, e número de plaquetas. A hipercoagulabilidade e a hipofibrinólise coexistem e são detetadas por testes viscoelásticos. Quando associadas à imobilização e aos fatores de risco intrínsecos do doente (idade, obesidade, comorbilidades, drogas) potenciam eventos tromboembólicos, apesar da tromboprofilaxia. Os pulmões são o órgão inicialmente e mais gravemente afetado. Até à data, a maioria dos doentes apresentou hipercoagulabilidade nos testes viscoelásticos, não detetada pelos testes de coagulação de rotina, e foi reportada uma elevada taxa de eventos trombóticos, sugerindo que esta deveria ser considerada uma das causas de deterioração clínica, não só em cuidados intensivos. Na coagulopatia associada à COVID-19 avançada, o número de plaquetas e o fibrinogénio podem diminuir significativamente, dependendo da gravidade clínica da infeção, assemelhando-se o quadro a uma coagulopatia de consumo. Nesta fase pode haver hemorragia, especialmente se o doente estiver sob extracorporeal membrane oxygenation. Os testes viscoelásticos afiguram-se muito úteis para avaliar a hipercoagulabilidade e a hipofibrinólise em doentes críticos SARS-CoV-2 com coagulopatia associada à COVID-19, parecendo também promissores para a gestão da anticoagulação. No entanto, é necessária mais investigação para determinar se testes viscoelásticos alterados, individualmente ou quando combinadoscom outros resultados clínicos/laboratoriais, podem identificar os doentes com risco trombótico acrescido. Estão a emergir rapidamente ensaios clínicos para avaliação da hipercoagulabilidade por testes viscoelásticos e da necessidade de personalização da anticoagulação em doentes SARS-CoV-2.


Subject(s)
Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/physiopathology , COVID-19/complications , COVID-19/physiopathology , Hemostasis , Blood Coagulation Disorders/blood , COVID-19/blood , Elasticity , Hematologic Tests , Humans , Viscosity
6.
Virus Res ; 293: 198259, 2021 02.
Article in English | MEDLINE | ID: covidwho-965136

ABSTRACT

BACKGROUND: The large number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has plunged the world into fear in recent times. In Japan, 18,769 novel coronavirus disease 2019 (COVID-19) cases have been reported as of June 30, 2020. This study aimed to assess whether cluster infection prevention is possible by evaluating the association between viral transmission and meteorological factors. METHODS: This study included 1263 people who were successively diagnosed with COVID-19 in Hokkaido, Japan between January 24, 2020 and June 30, 2020. After obtaining the values from the Japanese Meteorological Agency, the average scores of air temperature and humidity were calculated and compared with COVID-19 reproduction numbers, and the association between COVID-19 incidence or reproduction number and meteorological factors was assessed. RESULTS: The COVID-19 reproduction number in Hokkaido had three peaks that came several days before the surge in COVID-19 cases. The peaks are indicative of cluster infections. There was a strong negative correlation between the kinematic viscosity of atmospheric air and the reproduction number. DISCUSSION AND CONCLUSION: Analysis of the reproduction number is important for predicting or suppressing COVID-19 infection clusters. The authors found a strong association between meteorological factors, such as kinematic viscosity of atmospheric air and the incidence of COVID-19 infection. Meteorological forecasts could provide foreknowledge about COVID-19 infection clusters in the future.


Subject(s)
COVID-19 , Schizophrenia , Double-Blind Method , Humans , Japan/epidemiology , Piperazines , Piperidines , SARS-CoV-2 , Transdermal Patch , Viscosity
7.
Sci Adv ; 6(32): eabb0372, 2020 08.
Article in English | MEDLINE | ID: covidwho-827120

ABSTRACT

Despite the therapeutic success of monoclonal antibodies (mAbs), early identification of developable mAb drug candidates with optimal manufacturability, stability, and delivery attributes remains elusive. Poor solution behavior, which manifests as high solution viscosity or opalescence, profoundly affects the developability of mAb drugs. Using a diverse dataset of 59 mAbs, including 43 approved products, and an array of molecular descriptors spanning colloidal, conformational, charge-based, hydrodynamic, and hydrophobic properties, we show that poor solution behavior is prevalent (>30%) in mAbs and is singularly predicted (>90%) by the diffusion interaction parameter (k D), a dilute-solution measure of colloidal self-interaction. No other descriptor, individually or in combination, was found to be as effective as k D. We also show that well-behaved mAbs, a substantial subset of which bear high positive charge and pI, present no disadvantages with respect to pharmacokinetics in humans. Here, we provide a systematic framework with quantitative thresholds for selecting well-behaved therapeutic mAbs during drug discovery.


Subject(s)
Antibodies, Monoclonal , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Diffusion , Humans , Hydrophobic and Hydrophilic Interactions , Viscosity
8.
Med Hypotheses ; 144: 109997, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-599143

ABSTRACT

In this paper, a physicist's approach is given to support the necessity to wear surgical masks during the COVID-19 pandemics; they have become compulsory in Eastern countries, while in Western countries they are still an optional. My thesis is supported and described on the basis of a physicist's model which studies the droplets behavior when emitted by the respiratory apparatus of an infected person, symptomatic or not. The intermediate dimensioned droplets are proved to be changed into aerosol, losing their water content and becoming seriously contagious, but in their initial phase they could be easily caught by a simple surgical mask. The actual efficiency of FFP3 masks has been examined and found to be lower than expected.


Subject(s)
Aerosols , Air Microbiology , COVID-19/prevention & control , Masks , Pandemics , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/transmission , Exhalation , Filtration , Gravitation , Humans , Hydrodynamics , Masks/supply & distribution , Models, Biological , Particle Size , Respiratory System/virology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL